
Master Thesis

Online Step Size Adaptation for
Stochastic Optimization

A thesis submitted in partial fulfillment of the degree requirements

Master of Science

Graduate School of Neural Information Processing

Faculty of Science
Faculty of Medicine

Eberhard-Karls-Universität Tübingen

Presented by
Andrii Zadaianchuk

from Odessa, Ukraine

Tübingen
December 6, 2018

http://department.university.com
http://faculty.university.com
http://faculty.university.com
https://www.uni-tuebingen.de/universitaet.html

i

Declaration of Authorship

Thesis Advisor
Prof. Dr. Philipp Hennig

Department of
Computer Science

Second Reader
Prof. Dr. Martin A. Giese

Department of
Cognitive Neurology

I, Andrii Zadaianchuk, declare that this thesis titled, “Online Step Size Adaptation
for Stochastic Optimization” and the work presented in it are my own. I confirm that:

• I have written the dissertation myself and have not used any sources and aids
other than those indicated.

• I have not included data generated in one of my laboratory rotations and already
presented in the respective laboratory report

Date:

Signature:

ii

“An approximate answer to the right problem is worth a good deal more than an exact
answer to an approximate problem.”

John Tukey

iii

EBERHARD-KARLS-UNIVERSITÄT TÜBINGEN

Abstract
Faculty of Science
Faculty of Medicine

Graduate School of Neural Information Processing

Master of Science

Online Step Size Adaptation for Stochastic Optimization

by Andrii Zadaianchuk

An automatic finding of the optimal step sizes schedule for stochastic optimization
algorithms is quite important for machine learning practitioners as it could save a lot of
machine and human resources. Hypergradient descent (HD) is a recently rediscovered
algorithm that adapts a step size using a gradient descent (GD) update of the loss
function as a function of the step size. In this thesis, we provide an interpretation of
HD as an iteration of the proximal point algorithm applied to a linear approximation of
the loss function. However, it is possible to develop other adaptation rules using better
approximations of the loss function. We develop proximal quadratic (PQ) adaptation
that applies one iteration of a proximal point algorithm to the quadratic model of the
loss function. The quadratic model is fitted by reusing the stochastic estimators of
loss function values and its gradients from the previous iteration. The comparison
between PQ and HD adaptations shows that the performance of the optimization
algorithm with PQ adaptation is better than the performance of the algorithm with
HD adaptation and the sensitivity of the step-size hyperparameters is smaller, so one
can more easily tune step-size hyperparameters of the optimization algorithm with
PQ adaptation.

HTTPS://WWW.UNI-TUEBINGEN.DE/UNIVERSITAET.HTML
http://faculty.university.com
http://faculty.university.com
http://department.university.com

iv

Acknowledgements
I am deeply grateful to Prof. Dr. Philipp Henig, for giving me the opportunity

to work in his group. I am thankful for the wisest guidance during all the stages of
the research and writing of the thesis. I would like to extend my sincere thanks to
Lukas Balles, with whom we actively collaborated during my master project and whose
expertise and skills helped me to learn how to do proper high-quality research.

I am truly thankful to the Probabilistic Numerics group. Their feedback and
discussion of the further steps helped me to see my project from different perspectives.
In addition, they create the best environment for making first steps in research and
motivate me to continue my road in academia.

I also sincerely thank Konstantin Mishenko, with whom we discussed the theoretical
aspects of the project. His expertise in stochastic optimization and proximal algorithms
helped me to find the right language to describe the process of step size adaptation.

I am thankful to all the people who supported me during these two years of
intensive studies in Tübingen, including my groupmates, DAAD foundation, the
GTC administration and the professors who helped me to develop my mathematical
and coding skills as well as giving intuition about models that could describe the
computations inside the brain.

My biggest thanks go to my family, who support me all this time. I’m so happy that
I always have a place where I can recharge my energy to be able to do next steps. I
want to thank my friends – Olga, Alex, Nastiia and many other who inspired me to do
my best. With you, I see the power of friendship and it’s huge effect on every aspect
of life including studying and research. Thanks for the motivation to continue with
an exciting and challenging path of scientific discovery. Thanks for spending hours of
listening to my description of the project I’m working on and giving advices how to
improve my thesis. Melissa and Sarah, thank you so much for careful proof-reading
that helped to improve the quality of the thesis and my English skills as well. Finally,
I’m so thankful to my partner, Kseniia, who supported me all this time and listened
to my ideas helping me to find the right direction.

v

Contents

Declaration of Authorship i

Abstract iii

Acknowledgements iv

1 Introduction 1
1.1 Empirical Risk Minimization . 2
1.2 Optimization Methods in Large-scale Machine Learning 3

1.2.1 Deterministic Optimization . 3
1.2.2 Stochastic Optimization . 4

1.3 Specialized Optimization Methods for Deep Learning 4
1.3.1 SGD with Momentum . 5
1.3.2 ADAM . 5

1.4 Step Size Optimization . 5
1.5 Overview . 7

2 Online Adaptation of Step Size 8
2.1 Hypergradient Descent (HD) Adaptation 8
2.2 Stochatic Barzilai-Borwein Step Size 9

3 Proximal Point Algorithms 12
3.1 Proximal Operator . 12
3.2 Trust Region Optimization . 13
3.3 Proximal Point Algorithms . 13
3.4 Stochastic Proximal Point Algorithms 14

4 Proximal Step Size Adaptation 15
4.1 Modeling of the Loss Function . 15

4.1.1 Restriction on the Model Usage 16
4.2 Finding the Proximal Operator of the Model 17
4.3 Proximal Point Iteration for Step Size Adaptation 17
4.4 HD as Proximal Point of the First-order Approximation of the Loss

Function . 18

vi

5 Proximal Quadratic (PQ) Adaptation 20
5.1 Fitting the Quadratic Model . 20
5.2 Optimum of the Quadratic Model . 21
5.3 Bias of the Quadratic Model . 22
5.4 Proximal Point Iteration for the Quadratic Model 23
5.5 Quadratic Model Applicability . 25

6 Experiments 27
6.1 Experimental Set-Up . 27
6.2 Results . 28

6.2.1 HD Adaptation for Momentum Optimization Algorithm 28
6.2.2 Comparison Between PQ and HD Adaptation Algorithm with

Fine-tuned β . 28
6.2.3 Sensitivity of the PQ and HD Adaptation Models to the Hyper-

parameters α0 and β . 28

7 Conclusions 31

Bibliography 32

A Maximum Likelihood Parameters 35

B Full Optimization Process 35

C Quadratic Model Without Regularization 37

vii

List of Figures

4.1 Illustration of the available information that can be used for the adap-
tation of step size. 16

4.2 HD adaptation as an iteration of proximal point algorithm applied to
the linear model. 18

5.1 Divergence of the quadratic model without regularization. 22
5.2 Proximal quadratic adaptation for the step size. 24
5.3 An effect of Lipschitz continuity restriction. 26

6.1 Comparison between Momentum with constant step size and Momentum
with HD adaptation. 28

6.2 Fine-tuned PQ and HD step size adaptation. 29
6.3 Sensitivity of PQ and HD adaptation. 30

B.1 Full optimization process that was used for estimation of sensitivity for
Proximal Quadratic and Hypergradient Descent methods. 36

1

1 Introduction

Machine learning is the field that aims to transform data to intelligent algorithms
which can predict characteristics of unseen data from the same process or make task-
related decisions. There are many applications in industry where machine learning
can be used to create new products and services or to optimize the workflow inside a
company. Striking examples of new innovative products created with the use of machine
learning algorithms are virtual personal assistants such as Siri from Apple that use
speech recognition (Chiu et al., 2017) and natural language processing (Kumar et al.,
2016) to simplify the control of the phone by voice. The positive impact of machine
learning on organizational decisions has also been investigated by many researchers and
companies. Delen et al., 2013 investigated the impact of machine learning algorithms
on management, on organizational performance of small and medium-sized enterprises
in the service industry. Following their investigation, they reached the conclusion that
there is a strong and positive relationship between the usage of machine learning and
increased organizational performance.

Besides direct application, machine learning makes an impact on many other fields.
Scientists gain many valuable tools and ideas from machine learning. For theoreticians
in several fields like computational neuroscience, machine learning models, such as
probabilistic graphical models (Koller and Friedman, 2009) could be suitable for
describing the processes of interest. It is also useful for data processing and data
analysis. Machine learning has been used for approximation of molecules interaction
(Brockherde et al., 2017), imaging techniques in neuroscience (Vogt, 2018), drug
discovery (Lavecchia, 2015) and others. In addition to the use of machine learning as
a data processing tool, it is possible to use it as a scientific method. For example, the
ability to classify the feature of interest using different parts of the EEG time series
can show when the information connected with the feature of interest was processed
in the brain (King and Dehaene, 2014).

Depending on the nature of available data, there are several kinds of machine
learning models. The central types are supervised, unsupervised and reinforcement
learning. Reinforcement learning is used to actively learn how to behave in an unknown
environment. In this setting, the data is the reward for taken actions. Unsupervised
learning techniques uncover the structure of the dependencies between the different
features in data. For instance, they could be used to learn a useful transformation of
the data (e.g. a transformation that distinguishes between different interconnected
parts of the data - clusters) that reveals this structure.

In supervised learning, one distinguishes a special group of features - the target

Chapter 1. Introduction 2

features. In this framework, the conditional distribution over target futures given
the input features is approximated by choosing from a family of distributions such
that the available data is plausible under chosen distribution. Given target and input
features, it is possible to calculate the loss function that measures how good the current
performance of the algorithm is. The learning process is the minimization of the loss
function. In our work, we focused on a supervised learning framework because results
of optimization algorithms under this framework could then be compared to previously
obtained results (Johnson and Zhang, 2013; Tan et al., 2016) that provide better
optimization techniques using the structure of the supervised loss function.

In a supervised learning framework, there is a dataset D = {(xi, yi)}Ni=1 sampled
from some unknown true distribution P (x, y), where xi ∈ Rn is the a feature vector
and yi ∈ Rm is an output vector. Our aim is to use this dataset to discover a function
h(x) : Rn → Rm that predicts an output vector ynew given a feature vector xnew from
P (x).

1.1 Empirical Risk Minimization

The learning process in supervised learning is often formalized as an expected risk
minimization over a set of functions H. For large-scale machine learning the set H is
usually represented as a family of parametrized functions H = {h(x, θ) : θ ∈ Rd}. In
such a situation, a choice of the prediction function is fully determined by the choice
of the vector of parameters θ. The expected risk is given by

R(θ) =

∫
Rn×Rm

l(h(x, θ), y)dP (x, y). (1.1)

where P (x, y) is the true distribution over input-output pairs and l(h(x, θ), y) is a
loss function that compares the predicted output h(x, θ) and the true output y. The
choice of the loss function depends on the task of interest. For example, for the
multi-class classification task, a cross-entropy loss is widely used. In classification, the
predicted output h(x, θ) is often described as a concatenated vector of conditional
distributions h(x, θ)i = P (Ci|x) over possible classes {Ci}mi=1 given a feature vector x.
If the information about the class is encoded in an one-hot vector y ∈ Rm then the
cross-entropy loss function can be written as

l(h(x, θ), y) = −
m∑
j=1

y(j) log h(x, θ)(j). (1.2)

Even if the loss function is defined in a manner that it represents our task adequately,
one could not usually compute the expected risk, as the true distribution P (x, y) is
unknown. However, one can approximate it by the empirical distribution of our data
and minimize an empirical risk instead of the expected risk. The empirical risk could

Chapter 1. Introduction 3

be described as

Remp(θ) =
1

N

N∑
i=1

l(h(xi, θ), yi). (1.3)

Substitution of the expected risk by its approximation could lead to overfitting of
the model to the training data, thus, the loss function l(h(x, θ), y) is usually modified
by the addition of the regularization term that helps to prevent overfitting. In this case,
the learning process could be described as an unconstrained minimization problem

min
θ
L(θ), (1.4)

where the objective function L(θ) is the sum of an empirical risk Remp(θ) and the
regularization term Lreg(θ).

To verify that such a learning process minimizes the expected risk we could use a
validation loss that is the empirical loss on data that was not used during training.
For instance, cross-validation loss is used to tune the hyperparameters of the optimizer
that trains a machine learning model (Snoek, Larochelle, and Adams, 2012).

1.2 Optimization Methods in Large-scale Machine Learn-
ing

Next, we shortly discuss commonly used optimization algorithms for the objective
function L(θ) given that the size of the dataset is large and that the prediction function
h(xi, θ) is a non-linear, non-convex, smooth function. There are two types of numerical
optimization algorithms applied to such objective functions: stochastic and batch
optimization algorithms. The difference between them can be shown on the simplest
first-order optimization method that is called gradient descent (GD) and its stochastic
modification stochastic gradient descent (SGD).

1.2.1 Deterministic Optimization

GD is a batch method which uses the whole dataset in every update iteration. The
update of the GD is

θt+1 = θt − α∇L(θt). (1.5)

As one needs to calculate the whole gradient in each iteration, this process is computa-
tionally inefficient for large datasets. One of the ways to deal with this problem is to
diminish the number of iterations that are needed to converge. To do this one can use
second-order algorithms, that estimate and use the information about the curvature
of the loss function to converge faster. There are many second-order methods that
approximate the Hessian of the loss function such as Hessian-Free, Quasi-Newton and
Natural Gradient methods. Chapter 5 of Bottou, Curtis, and Nocedal, 2018 provides
a detailed review of the second-order methods in large-scale machine learning.

Chapter 1. Introduction 4

1.2.2 Stochastic Optimization

The second type of optimization algorithms uses stochastic estimators of the full loss
function and its gradients. For example, the SGD update rule is

θt+1 = θt − αg(θt), (1.6)

where g(θ) is the stochastic gradient that is a stochastic estimator of the full gradient
∇L(θt). Stochastic gradient is equal to the gradient of the loss function calculated on
a mini-batch B ⊂ D,

g(θ) =
1

|B|
∑
i∈B
∇l(θ;xi). (1.7)

It is unbiased estimator of the full gradient

E[g(θ)] = ∇L(θ). (1.8)

As a sum of identically distributed random variables, g(θ) is normally distributed with

g(θ) ∼ N (∇L(θ), cov[g(θ)]) (1.9)

The covariance of the stochastic gradient cov[g(θ)] = cov[∇li(θ)]
|B| is inversely proportional

to the batch size |B|. Thus, the mini-batch size determines the trade-off between the
cost of one iteration and the variance of the stochastic gradient.

SGD and its modifications are widely used in machine learning. However, the noise
in the gradient estimate causes several theoretical and practical problems. In contrast
to GD, for which you can prove linear convergence with a small enough step size
(Bottou, Curtis, and Nocedal, 2018), SGD has only sub-linear convergence (Bottou,
Curtis, and Nocedal, 2018). Moreover, it is possible to show that for any decent
direction, the convergence of such stochastic algorithm will still be sub-linear. This
problem was partially solved by variance reduction methods such as SAGA(Defazio,
Bach, and Lacoste-Julien, 2014), SVRG (Johnson and Zhang, 2013). These methods
enjoy linear convergence, however, they have several restrictions on their usage. For
instance, SAGA needs a large amount of memory to store previous values of the
gradients, whereas SVRG needs to compute the full gradient during their iteration, so
their usefulness for large-scale non-convex machine learning still should be proven.

1.3 Specialized Optimization Methods for Deep Learning

There are several methods that proved to be effective in the training of neural networks.
Surprisingly, SGD and its modifications such as SGD with Momentum have been shown
to be really effective when they are applied with carefully tuned learning rate schedules.
Another direction of work is based on the variance adaptation. Such optimizers as
RMSprop (Tieleman and Hinton., 2012), ADAM (Kingma and Ba, 2015) or SVAG
(Balles and Hennig, 2018) are commonly used during learning of neural network models.

Chapter 1. Introduction 5

Below, we describe the update rules of the two mostly used by the deep learning
community optimization methods.

1.3.1 SGD with Momentum

Despite the fact that neural networks are non-convex, non-linear functions, a simple
modification of SGD, SGD with Momentum (Polyak, 1964), with careful tuning of
hyperparameters, gives state-of-the-art results on different neural network architectures
such as ResNets (He et al., 2016). For finding an update direction, a moving average
of the stochastic gradient is calculated

mt = µmt−1 + (1− µ)gt, (1.10)

with µ ∈ (0, 1).
The update rule for SGD with Momentum is

θt+1 = θt − αtmt. (1.11)

For detailed description of the Momentum and the reasons of its effectiveness we refer
the reader to Goh, 2017.

1.3.2 ADAM

adam (Kingma and Ba, 2015) is one of the most used optimizes for deep learning
applications. It maintains moving averages of stochastic gradients and their element-
wise square,

m̃t = β1m̃t−1 + (1− β1)gt, mt =
m̃t

1− βt+1
1

, (1.12)

ṽt = β2ṽt−1 + (1− β2)g2t , vt =
ṽt

1− βt+1
2

, (1.13)

with β1, β2 ∈ (0, 1). Then, bias-correction is applied to moving averages. It is needed
because of the zero initialization of stochastic gradient. Finally, the fraction of the
first and the second moment is used to update parameters.

The update rule for ADAM is

θt+1 = θt − α
mt√
vt + ε

. (1.14)

1.4 Step Size Optimization

An additional important problem related to the stochastic optimization framework
is the choice of a step size α in the stochastic case. The step size is one of the most
important hyperparameters of machine learning models that dramatically influences

Chapter 1. Introduction 6

the learning process (Bengio, 2012). Our objective is to find a step size α or, more
general, a step size schedule {αt}T−1t=1 such that the expected risk R(θT ({αt}T−1t=1) is
minimal. As a good approximation of the expected risk, one can use cross-validation
loss. We can tune the step size schedule to find the minimum of the cross-validation
loss. Tuning of the step size schedule is challenging because the gradients of the
cross-validation loss function are usually unavailable. There are several ways to deal
with this problem. The first solution consists of the use of the zero-order optimization
of the cross-validation loss as a function of step size which does not need gradients
of the loss function. The methods such as a random search (Bergstra and Bengio,
2012) or Bayesian optimization (Snoek, Larochelle, and Adams, 2012) were successfully
applied to such hyperparameters tuning including step size hyperparameter.

The most common way to choose the step size is a manual search over a list with
reasonable step sizes. In this case, one trains the model with the predefined step
size or the step size schedule and, after the whole training process, one looks at the
cross-validated performance of the model. The values that give the best performance
on the validation dataset can be chosen by doing the whole optimization with several
step sizes or step size schedules. This method requires quite a lot of computational
resources because one should do the whole optimization of the parameters for every
step size.

Another solution could be described as reversible learning where gradients of the
cross-validation loss with respect to step size schedule were propagated back through the
entire training procedure. Recently, Maclaurin, Duvenaud, and Adams, 2015 computed
exact gradients of cross-validation performance with respect to all hyperparameters
by chaining derivatives backwards through the entire training procedure. Reversible
learning is not only one attempt to use first-order information for optimization of the
hyperparameters. For example, Wu et al., 2017 incorporate gradients in the Bayesian
Optimization framework.

All the methods previously discussed require calculation of the cross-validation
loss after a significant part of training and, as a result, they all are computationally
expensive. In contrast to these methods, one can treat the choice of step size as
an additional optimization problem of the regularized objective function L(θ). Such
methods look for a step size that minimizes the regularized loss function for the current
iteration.

In the deterministic case, we can choose the optimal step size using line search
algorithms such as inexact line search by Wolfe, 1969. However, in the stochastic
case, it is not possible to use line search algorithms as they are sensitive to the noise
in stochastic gradients. Recently, a modification of this algorithm in the stochastic
case, probabilistic line search (Mahsereci and Hennig, 2015), was developed. It uses
a Gaussian process to estimate the loss function and makes probabilistic decisions
about the optimal step size. Modelling of the loss function with a Gaussian process
can still require a lot of computations of the loss function, so one should compare
the computational complexity of this method with the computational complexity of

Chapter 1. Introduction 7

previous methods.
Another way to find the step size that minimizes the regularized loss function is

to apply an iterative algorithm that adapts the step size in every iteration using an
available local information about the loss function and its gradients to make it closer
to the optimal step size. We refer to such methods as online step size adaptation
methods and discuss them in detail in Chapter 2 as they are the main focus of this
thesis.

1.5 Overview

The rest of this thesis is organized as follows. Chapter 2 discusses methods that
were used for online adaptation of step size. Two of them, hypergradient descent and
stochastic Barzilai-Borwein, are reviewed in detail. Chapter 3 covers some aspects of
proximal algorithms that are important for understanding the adaptation rule that
we propose. In Chapter 4, we develop the framework that splits the procedure of
finding the update rule for adapting step size on three independent components. These
components are fitting of some model to the values of the loss function and its gradients,
computing of the proximal operator of fitted model and applying one iteration of the
proximal point method to adapt step size. Subsequently, we apply this framework
to develop the proximal quadratic model for step size adaptation (Chapter 5). We
analyze the trade-off between systematic mistakes caused by the regularization and
bias of the model because of noise in stochastic gradients. Chapter 6 discusses the
numerical experiments and their results.

8

2 Online Adaptation of Step Size

As finding the optimal step size in the stochastic case can be expensive there are
several attempts to use an iterative process that adapts the step size from iteration to
iteration, making it closer to the optimal step size (Baydin et al., 2018; Tan et al., 2016;
Barzilai and Borwein, 1988; Almeida et al., 1999; Schraudolph, 1999; Schaul, Zhang,
and LeCun, 2013). Such updates usually do not require additional computations of
the loss function and its gradients. Below we provide a more detailed description of
several adaptation algorithms that are most related to our model.

2.1 Hypergradient Descent (HD) Adaptation

Hypergradient descent (Baydin et al., 2018; Almeida et al., 1999) is an effective and
simple method for online step sizes adaptation. The main idea behind its update rule
is that we can use gradient descent to find the optimal step sizes for our optimization
algorithm. Most of the update rules can be described as the linear function of step
size αt

θt+1(αt) = θt + αtυt, (2.1)

where υt is an update direction and θt is current value of the parameters. The optimal
step size for such update could be described as

α∗t = arg min
αt

L(θt+1(αt)). (2.2)

To find the optimal step size α∗t we can use standard iterative algorithms such as
GD. The majority of these algorithms need at least the first order information, e.g.
gradients of the loss function as a function of step size ∂L(θt+1(αt))

∂αt
. Using the chain

rule we have

∂L(θt+1(αt))

∂α
= ∇θL(θt+1)

∂θt+1

∂α
= ∇θL(θt+1)

Tυt. (2.3)

We will refer to this gradient as the hypergradient.
As we do not have access to the full loss we will use the unbiased estimate of

hypergradient. Under the assumption that the noise at step t+ 1 is independent from
the noise at previous iterations, it is equal to the scalar product of the stochastic
gradient gt+1 and the current step υt

E[gTt+1υt] = E[gt+1]
Tυt = ∇θL(θt+1)

Tυt. (2.4)

Chapter 2. Online Adaptation of Step Size 9

So we can write down the stochastic HD update rule:

αt = αt−1 − βgTt+1υt. (2.5)

However, we cannot compute gt+1 without αt. If we assume that the optimum value of
the step size at each iteration does not change much, we can use the step size update
from previous step in the current iteration

αt = αt−1 − βgTt υt−1. (2.6)

We implemented this algorithm for SGD with Momentum. Pseudocode is presented
in the Algorithm 1.

Algorithm 1 Momentum with HD adaptation
Require: initial parameter value θ0, initial step size α0, Hypergradient step size

β,momentum µ, number of steps T
1: Initialize υ = 0, m = 0, α = α0

2: for t = 1, . . . , T do
3: Evaluate stochastic gradient g
4: Evaluate hypergradient h = gTυ

5: Adapt step size α = α− βh
6: Update moving average m = µm+ (1− µ)
7: Evaluate new direction υ = −m
8: Update parameters θ = θ + αυ

9: end for

2.2 Stochatic Barzilai-Borwein Step Size

The Barzilai and Borwein, 1988 method is motivated by quasi-Newton methods (Boyd
and Vandenberghe, 2004). A typical iteration of quasi-Newton methods for solving
Equation (1.4) is

θt+1 = θt −B−1t ∇θL(θt), (2.7)

where Bt is an approximation of the Hessian matrix of L(θ) at the current iterate θt.
One of the fundamental feature of the Bt is that it must satisfy the secant equation:

Btst = yt, (2.8)

where st = θt − θt−1 = αt−1υt−1 and yt = ∇L(θt)−∇L(θt−1). The secant equation
follows from applying the secant method of finding function roots to the derivative of
the second-order approximation of the loss function at the point θt−1. BB method uses
the simple Bt matrix, that is equal to the 1

αt
I and tries to solve the Equation (2.8)

Chapter 2. Online Adaptation of Step Size 10

approximately by minimizing euclidean norm of the difference

min
αt

∥∥∥∥ 1

αt
st − yt

∥∥∥∥2
2

. (2.9)

The solution of this minimization problem gives

αt =
‖st‖22
sTt yt

=
αt−1 ‖υt−1‖22

∇θL(θt)Tυt−1 −∇θL(θt−1)Tυt−1
. (2.10)

Because the BB algorithm requires computation to the full gradients, it has been
inapplicable in the stochastic case for a long time. Recently this algorithm was modified
for the stochastic case by Tan et al., 2016. This adaptation requires a large number of
parameter updates (inner loop of the optimization step) between two updates of step
size (outer loop of the optimization step). This is necessary to get the estimator of
the ratio in Equation (2.10) with a small bias. However, the connection between the
inferred step size of the outer loop of the optimization and the optimal step size for
the inner loop is not clear.

Algorithm 2 Momentum-BB
Require: initial parameter value θ0, initial step sizes α0, momentum µ, number of

epochs N , number of itterations in the one epoch M
1: Initialize υ = 0

2: for n = 0, . . . , N do
3: if n > 0 then

4: Update αn = 1
m

∥∥∥θ̃n − θ̃n−1∥∥∥2
2
\(θ̃n − θ̃n−1)T (ĝn − ĝn−1)

5: θ0 = θ̃n

6: ĝn+1 = 0

7: for m = 0, . . . ,M − 1 do
8: Evaluate stochastic gradient gm
9: Update estimate of the gradient ĝn+1 = µĝn+1 + (1− µ)gm

10: Evaluate new direction υ = µυ + (1− µ)(−gm)
11: Update parameters θm+1 = θm + αnυ

12: end for
13: θ̃n+1 = θm

14:

Both algorithms discussed above try to model the optimal step size without modeling
the loss function explicitly. In the case when the full loss function can be computed
efficiently, this approach could be sufficient. However, in the stochastic case it could
lead to the large bias and inefficient usage of available information. Thus, in the Section
4, we propose the model based approach that allows us to incorporate uncertainty about
our observation of stochastic loss and its gradients. For developing the adaptation rule
from the fitted model we use an iteration of the proximal point algorithm. The next

Chapter 2. Online Adaptation of Step Size 11

chapter gives a short introduction to the proximal point algorithms that is sufficient
to understand our framework for adaptation of the step sizes.

12

3 Proximal Point Algorithms

This section provides information about the proximal operator and its usage in proximal
point algorithms. The connection of the proximal operator with gradient descent and
trust region optimization is discussed. Next, the proximal point algorithm for a
quadratic function is described as its iteration was used in Chapter 5. Finally, we
discuss recent results in stochastic proximal point algorithms. For a more detailed
discussion of the proximal algorithms, the reader is refereed to Parikh and Boyd, 2014.

3.1 Proximal Operator

Let f : Rn → R be a closed proper convex function, then a proximal operator
proxf : Rn → Rn of f is defined by

proxf (υ) = arg min
x

(
f(x) +

1

2
‖x− υ‖22

)
. (3.1)

The minimized function has a unique minimizer for every υ ∈ Rn. The minimum
of the original function could be found by looking at the fixed points of the proximal
operator. In other words, proxαf (x∗) = x∗ if and only if x∗ minimizes f .

One important application of proximal operators is a proximal operator of the func-
tion approximation. For f that is twice differentiable at υ, its first-order approximation
near υ is equal to

f̂ (1)υ (x) = f(υ) +∇f(υ)T (x− υ) (3.2)

and the second-order approximation is

f̂ (2)υ (x) = f(υ) +∇f(υ)T (x− υ) + 1

2
(x− υ)T∇2f(υ)(x− υ). (3.3)

The proximal operators for these approximations are well-known update steps. The
proximal operator of the first-order approximation is

proxαf̂ (1)(υ) = υ − α∇f(υ), (3.4)

which is a standard gradient step with step size α. The proximal operator of the
second-order approximation is

proxαf̂ (2)(υ) = υ −
(
∇2f(υ) +

1

α
I

)−1
∇f(υ), (3.5)

Chapter 3. Proximal Point Algorithms 13

which is Tikhonov-regularized Newton’s update (Levenberg-Marquart). Application
of the proximal operator to the convex approximation of the function can lead to
well-known updates that are provably converging to the minimum of the original
function. However, there is no general result that links the quality of approximation on
each iteration and the size of the trust region α with the convergence of the iterative
procedure.

3.2 Trust Region Optimization

The proximal operator of a scaled function αf could be interpreted as an operator
that returns a minimizer of the original function with additional constraints. A trust
region optimization problem is written as

min
x
f(x)

subject to ‖x− υ‖ ≤ ρ.
(3.6)

Such problems typically arise when f(x) is approximation of some function g(x) that
is accurate only in some region near the point υ (like f̂ (1)υ (x) and f̂ (2)υ (x)). In this
case, this function should be minimized inside the region where this approximation is
accurate enough. The proximal problem for the scaled function f is

min
x

(
f(x) +

1

2α
‖x− υ‖22

)
. (3.7)

The solutions to the proximal problem class are included in the solutions to the
trust region problem class. In other words, for every solution of the proximal problem
with a scale parameter α, there is a trust region problem with a parameter ρ, such
that its solution is equal to the solution of the proximal problem. More specifically,
the set of the solutions to the trust region problem class that are located on the border
of the trust region is equivalent to the set of solutions of the proximal problem class
(Parikh and Boyd, 2014).

3.3 Proximal Point Algorithms

As we discuss above, we can find the minimum of the function f by finding the fixed
points of the proximity operator, so such points that

x∗ = proxαf (x
∗). (3.8)

To find such point, iterative process is constructed

xk+1 = proxαf (xk). (3.9)

Chapter 3. Proximal Point Algorithms 14

Such process converges to the fixed point of the proximal operator of the original
function and, thus, to one of the minimizers of this function.

A special case of proximal point algorithm, iterative refinement (Golub and Wilkin-
son, 1966), is a proximal point algorithm for the quadratic function

f(x) =
1

2
xTAx+ bTx+ c. (3.10)

For the quadratic function it is possible to find the closed form solution of the proximal
problem. The update rule of iterative refinement iterative process is

xk+1 =

(
A+

1

α
I

)−1(1

α
xk − b

)
(3.11)

We would use this iteration in one-dimensional case to construct the adaptation based
on a quadratic model of the loss function.

3.4 Stochastic Proximal Point Algorithms

In the situations when it is inefficient to use GD because of the size of data set, SGD
is often used. SGD uses just gradient information but not the entire function and this
seems sub-optimal in situations when the proximal operator of the function could be
computed easily. In these situations, the stochastic proximal point (SPP) (Patrascu
and Necoara, 2017) algorithm is a good alternative to SGD. Recent theoretical results
Patrascu and Necoara, 2017 show a non-asymptotic convergence of the stochastic
proximal point algorithm.

15

4 Proximal Step Size Adaptation

We propose a framework to develop an update rule for online adaptation of step size.
This framework consists of three parts. First, we approximate a one-dimensional
projection of the loss function to the current update direction by a convex function.
In the stochastic case, we do not have access to the exact values of the function and
its gradients so we need to fit the model with their stochastic estimators. Secondly, we
calculate the proximal operator of the fitted model. This could be done analytically or
using several iterations of the classical Newton’s method. Finally, we construct the
adaptation rule as one step of the proximal point algorithm.

4.1 Modeling of the Loss Function

The usual choice of the local approximation is a linear or quadratic model. However,
some functions are not well-approximated by a linear or quadratic model, leading to
slow convergence. Thus, for such functions a more appropriate choice of the local
model for loss function such as Cauchy approximation was proposed (Minka, 2000).
The choice of the model depends on the available information. In case of approximation
of one-dimensional loss function as a function of the step size, one can compute the
values of this function and its gradients at several points just by reusing values of
the gradient computed during the previous step. Usage of this information allows us
to fit our model without the cost of additionally computing the loss function and its
gradient in new points.

The loss function L(θt + αυt) could be treated as a function of step size α when the
update direction υt is fixed. Let us use ft(α) = L(θt+αυt) to denote this function. We
can approximate this function by some convex function ht(α). There are many possible
variants of the loss function approximation depending on the available information.
For example, if only local values of the gradients are given at some point, the best
model would be just a linear model (such as Equation (4.4)). The derivative of the
function ft(α) with respect to α at αt is equal to the hypergradient

f ′t(αt) = ∇θL(θt+1)
Tυt. (4.1)

In other words, HD adaptation uses information about the derivative of the function
ft(α) at the previous step size value to adapt its value. However, additional information
about ft(α) is available, so it is possible to construct a more accurate approximation
of the loss function.

Chapter 4. Proximal Step Size Adaptation 16

α

ft(α) = L(θt + αυt)

ft(αt) = L(θt+1)
f ′t(αt) = ∇L(θt+1)

Tυt

αt

ft(0) = L(θt)
f ′t(0) = ∇L(θt)Tυt

0

Figure 4.1: Illustration of the available information that can be used
for the adaptation of step size. We can compute ft(0) and f ′t(0) during
current iteration t and, additionally, we can compute ft(α) and f ′t(α)

during next iteration t+ 1.

We can easily get access to the derivatives and values of ft(α) at point α = 0 by
saving the previous value ft(0) = ft−1(αt−1) and computing the scalar product of the
previous gradient ∇θL(θt) and the current update direction υt

f ′t(0) = ∇θL(θt)Tυt. (4.2)

Thus, even without significant additional memory and computational resources(e.g.
by computing one scalar product and saving two one-dimensional values) the values
ft(0), ft(α), f

′
t(0), f

′
t(α) are accessible. Figure 4.2 depicts an illustration of the function

ft(α) and the information that can be used for the estimation of this function and
its minimum. In the stochastic case, the exact function values and its derivatives are
usually not computed but we could use their stochastic estimators instead. In such a
situation, the model is usually fitted to maximize the likelihood of the given estimators.

4.1.1 Restriction on the Model Usage

It is important to apply the adaptation of the step size only in cases when it is possible
to fit the convex model from a chosen set of functions (e.g. parametric family of
quadratic models). There are situations when maximum likelihood parameters for the
optimal model are such that our model ht(α) is not convex (e.g. in case of the quadratic
model described in Equation (5.1) this happens when w2 < 0). The adaptation of the
step size is not possible using the fitted model. There are several possible solutions to
this problem. One solution would be to approximate the loss function with another
model. Another, even simpler solution, would be not to update the step size at all
(this could be treated as applying the simplest constant model).

Chapter 4. Proximal Step Size Adaptation 17

4.2 Finding the Proximal Operator of the Model

After fitting the model to the available information about the function, one has the
access to the convex model of the one-dimensional projection of the loss function to
the current update direction. As a convex function, this model has a unique minimum,
that could be used for the adaptation of the step size. However, its value could be far
from the minimum of the underlying loss function, because of the noise in stochastic
gradients and an error in approximation by a convex function. So to make sure that the
adaptation would not change the step size significantly, we can look for the minimum
of the model in the trust region near the previous step size αt.

Following the results presented in Section 3.2, the trust region optimization problem
could be substituted by the proximal problem as it is easier to solve in many cases. For
some models such as linear and quadratic models, this operator could be computed in
the closed form. However, it is cheap to compute it for other convex functions because
the problem is one-dimensional. For example, one can use several iterations of the
classical Newton’s method.

4.3 Proximal Point Iteration for Step Size Adaptation

We would like to develop the update rule for step size adaptation. For this, we can use
one iteration of the proximal point algorithm applied to the fitted model ĥt(α). We
propose to use

αt+1 = proxβĥt(αt) (4.3)

as the step size update for the optimization algorithm. Such adaptation combines the
information about the minimum of the model with the previous optimal step size value.
A parameter β corresponds to the size of the trust region in which our stochastic
approximation ĥt(α) is still accurate enough. As the parameter β increases, we rely
more on the optimum of the fitted model ĥt(α). Unfortunately, we cannot determine
the optimal size of the trust region, so we still should tune this parameter β. However,
given that the model ht(α) has enough capacity and the noise in the measurements
of the loss function is small enough the sensitivity to this parameter is smaller and
larger β values could be used to adapt the step size faster. In the next chapters, we
will show how the change from a linear model to quadratic affects the sensitivity to
this hyperparameter and makes it’s tuning easier. For an illustration of usage of this
framework, we could derive the HD update rule using this framework.

Chapter 4. Proximal Step Size Adaptation 18

4.4 HD as Proximal Point of the First-order Approxima-
tion of the Loss Function

The function ft(α) can be approximated by the linear function hlin(α) that is going
through ft(αt) with the scope that is equal to hypergradient f ′t(αt),

hlin(α) = f ′t(αt) · (α− αt) + ft(αt). (4.4)

The next step is to find the proximal operator of the function hlin(α) in the point αt.
For the linear model, this could be done in the closed form. The proximal operator is

proxβhlin(αt) = arg min
α

hlin(α) +
1

2β
(α− αt)2 (4.5)

Applying one iteration of proximal point algorithm

αt+1 = proxβhlin(αt), (4.6)

we obtain exactly HD update

αt+1 = αt − βf ′t(αt). (4.7)

α

ft(α) = L(θt − αυt)
ft(αt) = L(θt+1)

f ′t(αt) = −∇L(θt+1)
Tυt

αtαt+1

ht(α) = f ′t(αt−1) · (α− αt) + ft(αt)

1
2β (α− αt)

2

0

Figure 4.2: Hypergradient Descent adaptation as an iteration of
proximal point algorithm applied to the linear model. We use the local
information ft(αt) and f ′t(αt) (or their stochastic estimators) to fit the
linear model ht(α) (blue line) to the loss function ft(α) (red line). The
next αt+1 is equal to the value of the proximal operator of the ht(α)
in the point αt. To find it we should minimize the sum of our model

ht(α) and the regularization term 1
2β (α− αt).

Therefore, it is possible to interpret a recently rediscovered HD adaptation rule as
a combination of the linear model of the loss function and proximal point iteration
for this model. However, following the same framework it is possible to develop other
update rules that are less sensitive to the hyperparameters choice and can show better

Chapter 4. Proximal Step Size Adaptation 19

performance. For this we apply our framework to the quadratic model that was fitted
to the stochastic estimators of function values and gradients.

20

5 Proximal Quadratic (PQ)
Adaptation

In this section, we investigate the properties of the quadratic model for step size
adaptation and develop a proximal quadratic adaptation for the step size. Following
the framework that was described in Chapter 4 we develop PQ step size adaptation in
three steps. The first part is modelling and fitting of the loss function by a quadratic
function. The second part is finding a proximal operator of the quadratic function in
closed form. The last part consists of the application of the update rule in the case
when it is possible to fit a convex quadratic model to the given observations.

5.1 Fitting the Quadratic Model

Following the interpretation of the HD adaptation as a linear model with quadratic
regularization, we propose to use a quadratic model as the model for the loss function
L(θt+1(α)) as the function of step size α. The quadratic model for the loss function
L(θt+1(α)) could be written as

hquad(α) = w2α
2 + w1α+ w0, (5.1)

where {wi}2i=0 are the parameters of the quadratic model hquad(α).1 We estimate these
parameters using all available information about the loss function. This information is
the stochastic estimates of the loss function and its derivative. When we are using
mini-batches to estimate the loss function and its gradient these estimates are random
variables that are approximately normally distributed as a sum of the i.i.d. random
variables. Fitting of the model consists of finding the maximum likelihood solution in
the class of quadratic functions with additive normal noise given stochastic estimates
f̂ , f̂(αt), f̂

′(0), f̂ ′(αt) of f(0), f(αt), f ′(0), f ′(αt) and the variance of these estimates.
This problem can be formulated as linear regression

y = Xw + ε, (5.2)

where w is vector of coefficients of the quadratic model and εi is normally distributed
additive noise εi ∼ N (0, σ2i). The vector y and the matrix X are constructed in the
way to fit a second-order polynomial to the estimators of the function values at two

1Here and later in this chapter, we drop the index t for function ft(α) and its model ht(α) using
just f(α) and h(α) for better readability.

Chapter 5. Proximal Quadratic (PQ) Adaptation 21

points αt and 0 and the estimators of the function derivatives at these points

y =


f̂(αt)

f̂(0)

f̂ ′(αt)

f̂ ′(0)

 , X =


1 αt α2

t

1 0 0

0 1 2αt

0 1 0

 . (5.3)

To find the optimal parameters we minimize the negative loglikelihood:

−LL(w) = const(w)+

4∑
i=1

(yi − xTi w)2

2σ2i
= const(w)+const(w)·

4∑
i=1

(
yi
σi
−
(
xi
σi

)T
w

)2

.

(5.4)
Finding the maximum likelihood solution for a linear model with different noise is
equivalent to the minimum a least squares problem with scaled inputs and outputs:

min
w
||ỹ − X̃w||22, (5.5)

where elements of ỹ and X̃ are ỹi = yi
σi
, x̃ij =

xij
σi
. The solution to this optimization

problem is

ŵ =
(
X̃T X̃

)−1
X̃ỹ. (5.6)

The full expression for maximum likelihood parameters ŵ in the general case is
presented in the first part of the Appendix. Here, we use several assumptions that
simplify the expression (A.1) for estimated parameters to a much simpler form that
does not contain the variances σ2i .

Assumption 1. The variance of the stochastic loss and gradient measurements is
approximately equal in different points. So using the notation from Equation (5.2), we
have σ1 ≈ σ2 = σloss and σ3 ≈ σ4 = σgrad.

Assumption 2. The variance of the stochastic loss is much larger than the variance
of the stochastic estimators of function derivatives: σloss � σgrad.

Under the Assumptions 1 and 2 the second and third component of the estimated
parameters ŵ would simplify to

ŵ1 ≈ f̂ ′(0), ŵ2 ≈ f̂ ′(αt)− f̂ ′(0)
2αt

. (5.7)

5.2 Optimum of the Quadratic Model

After the parameters of the quadratic model are estimated, we can find the minimum
of the model with the estimated parameters. If the model fits the data well we could
expect that the minimum value of the model is close to the minimum of the original
model.

The minimum of the quadratic model hquad(α) defined in Equation (5.1) is equal to
αopt = − w1

2w2
for h′′quad(α) = 2w2 > 0. Using the maximum likelihood estimators of the

Chapter 5. Proximal Quadratic (PQ) Adaptation 22

parameters under Assumptions 1 and 2, we obtain the estimator for the minimum of
the quadratic model

α̂opt ≈ −
f̂ ′(0)

f̂ ′(α)− f̂ ′(0)
αt. (5.8)

One can try to use the minimum of the quadratic model to adapt the step size.
However, such an adaptation rule is quite unstable. In Figure 5.1, we show that
an implementation of such adaptation algorithm (Pseudocode for this algorithm is
presented in part C of the Appendix as Algorithm 4) diverges even for large batch
sizes during the first thousand optimization iterations.

0 200 400 600 800 1000
Iterations

2.0

2.5

3.0

3.5

4.0

4.5

5.0

Tr
ai

n
lo

ss

batch size = 128
batch size = 256
batch size = 512

(a) Training loss for first 1000 iterations.

0 200 400 600 800 1000
Iterations

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

St
ep

 si
ze batch size 128

batch size = 256
batch size = 512

(b) Step size for first 1000 iterations.

Figure 5.1: Divergence of the quadratic model for different batch
sizes. Step sizes are unstable and much larger than optimal step size.

The experiment was done using SVHN dataset (P2).

In the next section, we show that such an adaptation rule is biased for large step
sizes when the noise in the gradient estimates is large or the derivatives of the loss
function have similar values.

5.3 Bias of the Quadratic Model

The stochastic estimates f̂ ′(0) and f̂ ′(αt) can be calculated as f̂ ′(0) = g(θt−1)
Tυt−1

and f̂ ′(αt) = g(θt)
Tυt−1. They are unbiased estimators of f ′(0) and f ′(αt) with

f̂ ′(0) ∼ N (f ′(0), σ20)

f̂ ′(α) ∼ N (f ′(α), σ2α),

where f ′(0) = ∇L(θt−1)Tυt−1 and f ′(α) = ∇L(θt)Tυt−1.
However, the optimal step size suggestion αopt is biased

E[α̂opt] = E

[
− f̂ ′(0)

f̂ ′(0)− f̂ ′(αt)

]
αt 6= −

E[f̂ ′(0)]
E[f̂ ′(0)]− E[f̂ ′(αt)]

αt. (5.9)

Chapter 5. Proximal Quadratic (PQ) Adaptation 23

Using the Taylor expansion, we can get approximation of the expectation of the ratio
of two random variables (Stuart and Ord, 1998):

E
[
X

Y

]
≈ µx
µy
− Cov(X,Y)

µ2y
+

Var[Y]µx
µ3y

. (5.10)

Applying it to the expectation in Equation (5.9) we have

E

[
f̂ ′(0)

f̂ ′(α)− f̂ ′(0)

]
≈ f ′(0)

f ′(α)− f ′(0)
+

σ20
(f ′(0)− f ′(α))2

+

(
σ20 + σ2α

)
f ′(0)

(f ′(0)− f ′(α))3︸ ︷︷ ︸
bias

. (5.11)

Since we need to correct for this bias, in situations where the difference f ′(0)− f ′(α)
is small or the noise in stochastic estimates f̂ ′(α) or f̂ ′(0) is large.

A similar problem was discussed in Tan et al., 2016 as their update rule is similar
to the quadratic update rule and also biased towards larger values. The authors
decided to decrease the noise in the estimators f̂ ′(0) and f̂ ′(α) to estimate the ratio in
Equation (5.11) more accurately. They made many update iterations (e.g. one epoch)
and then add all of them as one iteration to estimate the derivatives f ′(α) and f ′(0)
more accurately. For a detailed discussion of their approach, we refer the reader to
Section 2.2.

5.4 Proximal Point Iteration for the Quadratic Model

As we have seen in previous section, the minimum of the quadratic model could not
be used as the step size update because such an update is biased toward larger step
sizes and thus unstable. One way to make our model more stable is to rely on its
prediction only partially and partially stay near the previous point. This could be
done by finding the proximal operator of the quadratic model. There is a closed-form
solution for the proximal operator of the quadratic function. We discuss its properties
and compare them with the properties of the update derived as a minimum of the
quadratic model without the proximity term. The proximal operator returns the point
that is the minimizer of the sum of the quadratic model and proximity term

proxβhquad(αt) = arg min
α

hquad(α) +
1

2β
(α− αt)2. (5.12)

To find it we should take the derivative and set it to zero

proxβhquad(αt) =

1
βαt − w1

2w2 +
1
β

. (5.13)

We formulate the update rule as one iteration of the proximal point algorithm. The
next step size is

αt+1 =

1
βαt − w1

2w2 +
1
β

. (5.14)

Chapter 5. Proximal Quadratic (PQ) Adaptation 24

Using maximum-likelihood estimation ŵ the parameters w given in Equation (5.7) we
obtain the estimator of the regularized step size update

α̂t+1 =

1
βαt − f̂

′(0)

f̂ ′(α)−f̂ ′(0)
αt

+ 1
β

. (5.15)

This step size update is more stable to the noise in stochastic estimates of function

α

f(α) = L(θt − αυt)
f(αt) = L(θt+1)

f ′(αt) = −∇L(θt+1)
Tυt

αtαt+1

hquad(α) = w2α
2 + w1α+ w0

1
2β (α− αt)

2

f(0) = L(θt)
f ′(0) = −∇L(θt)Tυt

0

Figure 5.2: Proximal Quadratic model for step size adaptation. We
use function values f(0) and f(αt) and the derivatives f ′(0) and f ′(αt)
(or their stochastic estimators) to fit the quadratic model hquad(α) (blue
line) to the loss function projection on the current update direction
f(α) (red line). The next αt+1 is equal to the value of the proximal
operator of the hquad(α) in the point α. To find it we should minimize
the sum of our model hquad(α) and the regularization term 1

2β (α−αt).

derivatives. For small values of the regularization parameter β, the bias of this update
is almost equal to zero

E

 1
βαt − f̂

′(0)

f̂ ′(α)−f̂ ′(0)
αt

+ 1
β

 ≈ 1
βαt − f

′(0)

f ′(α)−f ′(0)
αt

+ 1
β

. (5.16)

However, the smaller the β the bigger the difference between the optimal quadratic

prediction f ′(0)
f ′(α)−f ′(0) and regularized quadratic prediction

1
β
αt−f ′(0)

f ′(α)−f ′(0)
αt

+ 1
β

. Thus, the

regularization parameter β determines the trade-off between sensitivity to noise and
the speed of step size adaptation.

We implement PQ adaptation for SGD with Momentum. Algorithm 3 contains
pseudocode for this modification of SGD with Momentum. However, the usage of such
adaptation is not restricted to the SGD with Momentum as it is easy to modify other
optimization algorithms such as ADAM to use PQ adaptation.

Chapter 5. Proximal Quadratic (PQ) Adaptation 25

Algorithm 3 Momentum with Proximal Quadratic adaptation (PQ-Momentum)
Require: initial parameter value θ0, initial step size α0, regularization constant β,

momentum µ, number of steps T , upper bound on Lipschitz constant M
1: Initialize υ = 0, m = 0, α = α0

2: for t = 1, . . . , T do
3: Evaluate stochastic gradient g
4: Evaluate one-dimentinal derivatives f̂ ′(α) = gTυ and f̂ ′(0) = gToldυ

5: if 0 ≤ f̂ ′(α)−f̂ ′(0)
α ≤M or f ′(0) > 0 then

6: Update α =
1
β
α−f̂ ′(0)

f̂ ′(α)−f̂ ′(0)
α

+ 1
β

7: end if
8: Update moving average m = µm+ (1− µ)
9: Evaluate new direction υ = −m

10: Update parameters θ = θ + αυ

11: Update gold = g

12: end for=0

5.5 Quadratic Model Applicability

As we discussed in Section 4.1.1, the fitted model could be not convex. For the
quadratic model (Equation (5.1)), this happens when the fitted coefficient near the
quadratic term θ̂2 is negative.

Also, as our coefficients are estimated using stochastic estimators of the function
derivatives, it is important to make sure that our adaptation of the step size is not
dominated by this noise. This could happen in the situation when we estimate the loss
in the points that are near to each other. To avoid this we take additional assumption
that the derivatives in our model are Lipschitz continuous with constant M

f ′(α)− f ′(0)
α

≤M. (5.17)

Thus, in the situation when convexity or Lipschitz continuity is violated in the fitted
model, we discard the fitted model and use the simplest constant model for the step
size. In addition, we don’t want to modify the step size in situations when there is no
descent or in other words, when f̂ ′(0) is negative. In such a situation the model would
predict a negative step size that is non-optimal globally. We implement this transition
between the quadratic and constant model in line 5 of Algorithm 3. There we used an
upper bound to Lipschitz (e.g. some large constant such that we are not updating the
step size when the computations are not dominated by the noise).

To show the importance of the Lipschitz continuity assumption, we provide the
results for the modification of Algorithm 3 without restriction on the f̂ ′(α)−f̂ ′(0)

α

(Figure 5.3). One can see that without this restriction PQ adaptation fails for small β,
whereas for other β it works with this restriction as precise as without it.

Chapter 5. Proximal Quadratic (PQ) Adaptation 26

0.001 0.006 0.01 0.06 0.1 0.6
Regularization parameter,

0.
01

0.
00

1
0.

00
01

1e
-0

5
In

iti
al

 le
ar

ni
ng

 ra
te

,
0

1.9 0.42 1.2 0.41 0.42 0.52

1.6 1.3 1.6 0.4 0.42 0.5

1.8 1.2 0.49 0.41 0.42 0.54

1.6 1.4 1.6 0.4 0.41 0.52

Quadratic model
without Lipschitz continuity assumption

0.40

0.44

0.48

0.52

0.56

0.60

M
in

im
al

 tr
ai

n
lo

ss

0.001 0.006 0.01 0.06 0.1 0.6
Regularization parameter,

0.
01

0.
00

1
0.

00
01

1e
-0

5
In

iti
al

 le
ar

ni
ng

 ra
te

,
0

0.44 0.42 0.4 0.4 0.41 0.53

0.44 0.41 0.4 0.4 0.41 0.5

0.44 0.41 0.4 0.39 0.42 0.54

0.44 0.42 0.4 0.4 0.42 0.52

Quadratic model

0.40

0.44

0.48

0.52

0.56

0.60

M
in

im
al

 tr
ai

n
lo

ss
Figure 5.3: An effect of Lipschitz continuity restriction. One can see
that the model without Lipschitz continuity constrain is not converging
to the minimum for small values of β. Minimum loss values of large
part of the training dataset. The minimum was chosen from the values
loss function computed during fixed number of optimization iterations
that is enough for convergence. For both Algorithm 3 and Algorithm 4

the value of momentum parameter is µ = 0.99.

27

6 Experiments

We experimentally compare PQ with HD adaptation on three problems with different
difficulty. First, we compare the algorithms using fitted hyperparameters to show that
PQ adaptation finds a better solution given the same computational resources.

Both of these models have two hyperparameters: the initial step size α0 and the
regularization parameter β. As the initial idea of step size adaptation is to make
the choice of hyperparameters easier, it is important to compare sensitivity of these
hyperparameters. In addition, we also compared the sensitivity of the SGD with
Momentum without step size adaptation to the step size to show that both methods
are less sensitive to the hyperparameter β than SGD with Momentum to step size α.

6.1 Experimental Set-Up

We tested the optimizers on three problems: CNN training on the MNIST, CIFAR-
10 and SVHN datasets. On MNIST, we used CNN with two convolutional layers,
interspersed with max-pooling, and two fully-connected layers. On CIFAR-10 and
SVHN, we used a similar CNN with three convolutional layers and three fully-connected
layers. We used a cross-entropy loss function.

MNIST

We train convolutional neural network with two convolutional layers (32 filters of size
5× 5, 64 filters of size 5× 5) and two fully-connected layers of 1024 and 10 units with
ReLU activation. The output layer has 10 units with softmax activation.

CIFAR-10 and SVHN

We train a convolutional neural network (CNN) with three convolutional layers (64
filters of size 5× 5, 96 filters of size 3× 3, and 128 filters of size 3× 3) interspersed
with max-pooling over 3× 3 areas with stride 2. Two fully-connected layers with 512

and 256 units follow. We use ReLU activation function for all layers. The output layer
has 10 units for the 10 classes of CIFAR-10 with softmax activation. The value of the
L2-regularization parameter λ = 0.002.

Chapter 6. Experiments 28

6.2 Results

6.2.1 HD Adaptation for Momentum Optimization Algorithm

First, we want to demonstrate that HD adaptation can be applied to the Momentum
optimization algorithm (without Nesterov acceleration) and gives a similar advantage
in sensitivity to the initial step size selection Baydin et al., 2018. To show this we
compare the Momentum with HD adaptation (1) and Momentum with constant step
size (Figure 6.1). One can see that given the right β the learning of the model is
the same for all initial step sizes α0. Also, it can be seen that the optimal step size
oscillates a lot and probably that causes short time increases of the train loss.

0 50 100 150 200
epochs

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Tr
ai

n
lo

ss

alpha = 0.01
alpha = 0.001
alpha = 0.0001

(a) Constant step size.

0 50 100 150 200
epochs

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Tr
ai

n
lo

ss

HD, alpha_0 = 0.01
HD, alpha_0 = 0.001
HD, alpha_0 = 0.0001

(b) HD adaptation.

0 50 100 150 200
epochs

0.01

0.00

0.01

0.02

0.03

St
ep

 si
ze

HD, alpha_0 = 0.01
HD, alpha_0 = 0.001
HD, alpha_0 = 0.0001

(c) Step size.

Figure 6.1: Comparison between Momentum with constant step size
and Momentum with HD adaptation on the CIFAR10 dataset (P3).
For Momentum with HD adaptation, the regularization parameter
β = 0.001 is the same as was used in Baydin et al., 2018. Given that β
is near optimal for this problem, the optimization of the training loss
is the same for all initial step sizes, whereas the performance of the
Momentum with constant step size is quite sensitive to the step size.

6.2.2 Comparison Between PQ and HD Adaptation Algorithm with
Fine-tuned β

We compare the performance of PQ and HD adaptation algorithms. First, we find the
optimal regularization parameter βopt for each adaptation model. We use grid search
to find the optimal value of βopt. In Figure 6.2 one can see the results for PQ and HD
models on three different data sets. For all of them the training loss of the Moomentum
with PQ adaptation is better that coresponding training loss of the Momentum with
HD adaptation.

6.2.3 Sensitivity of the PQ and HD Adaptation Models to the Hy-
perparameters α0 and β

For the second experiment, we compered the sensitivity of the Hypergradint Descent
and PQ Model to the hyperparameters α0 and β. For this we looked at the minimum
value of the good estimate (e.g. computed on 1/5 of the whole training dataset) of the

Chapter 6. Experiments 29

0 10 20 30 40 50 60
epochs

0.00

0.02

0.04

0.06

0.08

0.10

Tr
ai

n
lo

ss

HD, = 0.1
Quad, = 0.06

0 10 20 30 40 50 60
epochs

0.95

0.96

0.97

0.98

0.99

1.00

Te
st

 a
cc

ur
ac

y

HD, = 0.1
Quad, = 0.06

0 10 20 30 40 50 60
0.00

0.05

0.10

0.15

St
ep

 si
ze

HD, = 0.1

0 10 20 30 40 50 60
epochs

0.0

0.1

0.2

0.3

0.4

St
ep

 si
ze

Quad, = 0.06

0 25 50 75 100 125 150 175 200
epochs

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Tr
ai

n
lo

ss

HD, mean
Quad, mean

0 25 50 75 100 125 150 175 200
epochs

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

Te
st

 a
cc

ur
ac

y

HD, mean
Quad, mean

0 25 50 75 100 125 150 175 200
0.1

0.0

0.1

0.2

St
ep

 si
ze

HD, mean

0 25 50 75 100 125 150 175 200
epochs

0.00

0.05

0.10

0.15

0.20

0.25
St

ep
 si

ze
Quad, mean

0 50 100 150 200 250 300 350 400
epochs

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Tr
ai

n
lo

ss

HD, mean
Quad, mean

0 50 100 150 200 250 300 350 400
epochs

0.80

0.82

0.84

0.86

0.88

0.90

Te
st

 a
cc

ur
ac

y

HD, mean
Quad, mean

0 50 100 150 200 250 300 350 400
0.10

0.05

0.00

0.05

0.10

St
ep

 si
ze

HD, mean

0 50 100 150 200 250 300 350 400
epochs

0.00

0.05

0.10

0.15

0.20

St
ep

 si
ze

Quad, mean

Figure 6.2: Experimental results of fine-tuned PQ (Algorithm 3)
and HD (Algorithm 1) on three test problems. Rows: top: MNIST
(P1); middle: SVHN (P2) bottom: CIFAR10 (P3). Columns: right :
train loss; middle: test accuracy; left : step size. The parameter β was
chosen by grid search. Initial step sizes are α0 ∈ [10−2, 10−3, 10−4]
(transperent lines). Bold lines are the mean over all initial learning
rates. PQ is always superior to the HD, dispite the fact that the same
βopt = 0.06 was used for the PQ model. For both Algorithm 1 and

Algorithm 3 the value of momentum parameter is µ = 0.99.

Chapter 6. Experiments 30

whole loss function. The minimum was chosen from the checkpoints computed during
the optimization process of these algorithms on the grid of initial step sizes α0 and
hyperlearning rates β.

0.001 0.006 0.01 0.06 0.1 0.6
Regularization parameter,

0.
01

0.
00

1
0.

00
01

1e
-0

5
In

iti
al

 le
ar

ni
ng

 ra
te

,
0

0.00021 0.00011 5.5e-05 4e-05 1.7e-05 6.9e-05

0.0002 0.0001 5.7e-05 3.1e-05 2.2e-05 2.3

0.0002 9.5e-05 5.6e-05 3e-05 2e-05 2.1e-06

0.00019 9.8e-05 5.7e-05 3.1e-05 2.2e-05 2.4

HD model

0.000015

0.000030

0.000045

0.000060

0.000075

0.000090

M
in

im
al

 tr
ai

n
lo

ss

0.001 0.006 0.01 0.06 0.1 0.6
Regularization parameter,

0.
01

0.
00

1
0.

00
01

1e
-0

5
In

iti
al

 le
ar

ni
ng

 ra
te

,
0

1.5 1 0.94 0.82 0.83 1

1.4 1.2 0.9 0.81 0.89 1

1.5 1 0.94 0.84 0.83 0.98

1.5 1 0.91 0.81 0.83 1

HD model

0.80

0.84

0.88

0.92

0.96

1.00

M
in

im
al

 tr
ai

n
lo

ss

0.001 0.006 0.01 0.06 0.1 0.6
Regularization parameter,

0.
01

0.
00

1
0.

00
01

1e
-0

5
In

iti
al

 le
ar

ni
ng

 ra
te

,
0

0.74 0.47 0.43 0.44 0.45 0.56

0.76 0.46 0.43 0.43 0.44 0.56

0.75 0.46 0.43 0.44 0.45 0.57

0.77 0.46 0.42 0.44 0.44 0.57

HD model

0.40

0.44

0.48

0.52

0.56

0.60

M
in

im
al

 tr
ai

n
lo

ss

0.001 0.006 0.01 0.06 0.1 0.6
Regularization parameter,

0.
01

0.
00

1
0.

00
01

1e
-0

5
In

iti
al

 le
ar

ni
ng

 ra
te

,
0

0.00033 0.0001 3.6e-05 3.3e-05 6.8e-05 8.3e-05

0.00031 5.5e-05 0.00011 1.7e-05 2.7e-05 6.9e-05

0.00028 4.5e-05 4.7e-05 2.6e-05 3e-05 1.5e-05

0.00036 7.7e-05 6.8e-05 4.3e-05 5.9e-05 6.2e-05

Quadratic model

0.000015

0.000030

0.000045

0.000060

0.000075

0.000090

M
in

im
al

 tr
ai

n
lo

ss

0.001 0.006 0.01 0.06 0.1 0.6
Regularization parameter,

0.
01

0.
00

1
0.

00
01

1e
-0

5
In

iti
al

 le
ar

ni
ng

 ra
te

,
0

0.99 0.88 0.83 0.79 0.78 0.92

1 0.87 0.84 0.79 0.83 0.97

1 0.86 0.83 0.77 0.8 0.94

1 0.89 0.83 0.9 0.81 0.97

Quadratic model

0.80

0.84

0.88

0.92

0.96

1.00

M
in

im
al

 tr
ai

n
lo

ss

0.001 0.006 0.01 0.06 0.1 0.6
Regularization parameter,

0.
01

0.
00

1
0.

00
01

1e
-0

5
In

iti
al

 le
ar

ni
ng

 ra
te

,
0

0.44 0.42 0.4 0.4 0.41 0.53

0.44 0.41 0.4 0.4 0.41 0.5

0.44 0.41 0.4 0.39 0.42 0.54

0.44 0.42 0.4 0.4 0.42 0.52

Quadratic model

0.40

0.44

0.48

0.52

0.56

0.60

M
in

im
al

 tr
ai

n
lo

ss

Figure 6.3: Comparison between PQ and HD adaptation. The
minimum was chosen from the loss function values computed during the
fixed number of optimization iterations that is enough for convergence.
There are almost no sensitivity to the initial learning rate α0. For
the MNIST dataset, the difference is quite small as both algorithms
are capable to find the minimum with quite small values. For SVHN
and CIFAR10, the sensitivity to the β is smaller for PQ adaptation.
The minimum loss is also smaller for PQ adaptation for any choice of
hyperparameters α0 and β. Rows: top: HD (Algorithm 1); bottom:
PQ (Algorithm 3). Columns: right : MNIST (P1) ; middle: SVHN
(P2); left : CIFAR10 (P3). For both Algorithm 1 and Algorithm 3 the

value of momentum parameter is µ = 0.99.

31

7 Conclusions

In this thesis, we studied the optimal choice of the step sizes schedule in the case of
stochastic optimization. We introduced a proximal adaptation framework that uses
a proximal operator of a convex model to adapt the step size. It was shown that
hypergradient descent could be interpreted as proximal adaptation with a linear model.
We developed PQ adaptation that aims to use all the available information to fit a
quadratic model and then uses proximal point iteration for this model to adapt the
step size. We compared two algorithms: Momentum with HD and PQ adaptation.
For small datasets, both optimizers work well. On larger datasets, the PQ adaptation
improves the performance of the optimization algorithm and is less sensitive to the
hyperparameters choice.

32

Bibliography

Almeida, Luís B. et al. (1999). “Parameter Adaptation in Stochastic Optimization”.
OnLine Learning in Neural Networks. Cambridge University Press, pp. 111–134.

Balles, Lukas and Philipp Hennig (2018). “Dissecting ADAM: The Sign, Magnitude and
Variance of Stochastic Gradients”. Proceedings of the 35th International Conference
on Machine Learning.

Barzilai, Jonathan and Jonathan M Borwein (1988). “Two-point step size gradient
methods”. IMA journal of numerical analysis 8.1, pp. 141–148.

Baydin, Atilim Gunes et al. (2018). “Online Learning Rate Adaptation with Hypergra-
dient Descent”. International Conference on Learning Representations.

Bengio, Yoshua (2012). “Practical recommendations for gradient-based training of deep
architectures”. Neural networks: Tricks of the trade. Springer, pp. 437–478.

Bergstra, James and Yoshua Bengio (2012). “Random search for hyper-parameter
optimization”. Journal of Machine Learning Research, pp. 281–305.

Bottou, Léon, Frank E. Curtis, and Jorge Nocedal (2018). “Optimization Methods for
Large-Scale Machine Learning”. Siam Reviews 60.2, pp. 223–311.

Boyd, Stephen and Lieven Vandenberghe (2004). Convex optimization. Cambridge
university press.

Brockherde, Felix et al. (2017). “Bypassing the Kohn-Sham equations with machine
learning”. Nature communications 8.1, p. 872.

Chiu, Chung-Cheng et al. (2017). “State-of-the-art speech recognition with sequence-
to-sequence models”. arXiv preprint arXiv:1712.01769.

Defazio, Aaron, Francis Bach, and Simon Lacoste-Julien (2014). “SAGA: A fast incre-
mental gradient method with support for non-strongly convex composite objectives”.
Advances in Neural Information Processing Systems, pp. 1646–1654.

Delen, Dursun et al. (2013). “A comparative analysis of machine learning systems
for measuring the impact of knowledge management practices”. Decision Support
Systems 54.2, pp. 1150–1160.

Goh, Gabriel (2017). “Why Momentum Really Works”. Distill. url: http://distill.
pub/2017/momentum.

Golub, Gene H and James H Wilkinson (1966). “Note on the iterative refinement of
least squares solution”. Numerische Mathematik 9.2, pp. 139–148.

He, K. et al. (2016). “Deep Residual Learning for Image Recognition”. 2016 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778.

http://distill.pub/2017/momentum
http://distill.pub/2017/momentum

BIBLIOGRAPHY 33

Johnson, Rie and Tong Zhang (2013). “Accelerating stochastic gradient descent using
predictive variance reduction”. Advances in Neural Information Processing Systems,
pp. 315–323.

King, JR and S Dehaene (2014). “Characterizing the dynamics of mental representations:
the temporal generalization method”. Trends in cognitive sciences 18.4, pp. 203–210.

Kingma, Diederik P. and Jimmy Ba (2015). “ADAM: A Method for Stochastic Optimiza-
tion”. Proceedings of the 3rd International Conference on Learning Representations
(ICLR). arXiv: 1412.6980.

Koller, Daphne and Nir Friedman (2009). Probabilistic Graphical Models: Principles
and Techniques. MIT press.

Kumar, Ankit et al. (2016). “Ask Me Anything: Dynamic Memory Networks for Natural
Language Processing”. International Conference on Machine Learning, pp. 1378–
1387.

Lavecchia, Antonio (2015). “Machine learning approaches in drug discovery: methods
and applications”. Drug discovery today 20.3, pp. 318–331.

Maclaurin, Dougal, David Duvenaud, and Ryan Adams (2015). “Gradient-based hyper-
parameter optimization through reversible learning”. International Conference on
Machine Learning, pp. 2113–2122.

Mahsereci, Maren and Philipp Hennig (2015). “Probabilistic line searches for stochastic
optimization”. Advances in Neural Information Processing Systems, pp. 181–189.

Minka, Thomas P (2000). Beyond newton’s method.
Parikh, Neal, Stephen Boyd, et al. (2014). “Proximal algorithms”. Foundations and

Trends R© in Optimization 1.3, pp. 127–239.
Patrascu, Andrei and Ion Necoara (2017). “Nonasymptotic convergence of stochastic

proximal point algorithms for constrained convex optimization”. arXiv preprint
arXiv:1706.06297.

Polyak, B.T. (1964). “Some methods of speeding up the convergence of iteration
methods”. USSR Computational Mathematics and Mathematical Physics 4.5, pp. 1
–17.

Schaul, Tom, Sixin Zhang, and Yann LeCun (2013). “No more pesky learning rates”.
International Conference on Machine Learning, pp. 343–351.

Schraudolph, N. N. (1999). “Local gain adaptation in stochastic gradient descent”. 1999
Ninth International Conference on Artificial Neural Networks ICANN 99. (Conf.
Publ. No. 470). Vol. 2, 569–574 vol.2.

Snoek, Jasper, Hugo Larochelle, and Ryan P Adams (2012). “Practical Bayesian
Optimization of machine learning algorithms”. Advances in Neural Information
Processing Systems, pp. 2951–2959.

Stuart, A. and J. K. Ord (1998). “Kendall’s advanced theory of statistics. Vol.1:
Distribution theory”. Kendall’s advanced theory of statistics. Vol.1: Distribution
theory, 6th ed. 6 Volumes. by A. Stuart and J.K. Ord. London: Hodder Arnold,
1998. Halsted Press (Wiley, Inc.), p. 351.

http://arxiv.org/abs/1412.6980

BIBLIOGRAPHY 34

Tan, Conghui et al. (2016). “Barzilai-Borwein Step Size for Stochastic Gradient Descent”.
Proceedings of the 30th International Conference on Neural Information Processing
Systems, pp. 685–693.

Tieleman, T. and G. Hinton. (2012). “RMSPROP. Divide the gradient by a running
average of its recent magnitude.” COURSERA: Neural networks for machine
learning, Lecture 6.5.

Vogt, Nina (2018). “Machine learning in neuroscience”. Nature Methods 15.1, p. 33.
Wolfe, Philip (1969). “Convergence conditions for ascent methods”. SIAM review 11.2,

pp. 226–235.
Wu, Jian et al. (2017). “Bayesian optimization with gradients”. Advances in Neural

Information Processing Systems, pp. 5267–5278.

35

A Maximum Likelihood
Parameters

Using X̃ and ỹ defined in Equation (5.5) above we can compute maximum likelihood
parameters for the model using Equation (5.8)

θ̂ = a ·


(
−2σ22αf ′(0)− 2σ22αf

′(α) + 4σ22f(α) + f(0)
(
4σ21 + σ23α

2 + σ24α
2
))(

−σ24α2f ′(α)− 2σ24αf(0) + 2σ24αf(α) + f ′(0)
(
4σ21 + 4σ22 + σ23α

2
))

1
α

(
f ′(0)

(
−2σ21 − 2σ22 − σ23α2

)
+ f ′(α)

(
2σ21 + 2σ22 + σ24α

2
)
+

+f(0)
(
−σ23α+ σ24α

)
+ f(α)

(
σ23α− σ24α

)

 (A.1)

where a = 1
4σ2

1+4σ2
2+σ

2
3α

2+σ2
4α

2 .
Under the Assumption 1, we can simplify Equation (A.1)

θ̂ =


1

σ2
gradα

2+4σ2
loss

(
−σ2lossαf ′(0)− σ2lossαf ′(α) + 2σ2lossf(α) + f(0)

(
σ2gradα

2 + 2σ2loss

))
1

σ2
gradα

2+4σ2
loss

(
−σ2

gradf
′(α)

2 α2 − σ2gradαf(0) + σ2gradαf(α) +
f ′(0)
2

(
σ2gradα

2 + 8σ2loss

))
−f ′(0)+f ′(α)

2α


If we assume that the variance is equal σi = σ then we have

θ̂ =


1

α2+4

(
−αf ′(0)− αf ′(α) + f(0)

(
α2 + 2

)
+ 2f(α)

)
1

α2+4

(
−α2f ′(α)

2 − αf(0) + αf(α) + f ′(0)
2

(
α2 + 8

))
−f ′(0)+f ′(α)

2α

 .

B Full Optimization Process

In the next page we presented the full optimization process for Momentum with HD
and PQ adaptations. The sensitivity of the hyperaprameters were counted using the
minimum values from these optimization process. We presented this plot to show that
QP is better not only for minimum values for some fixed number of iterations, but
during the whole optimization process.

Appendix B. Full Optimization Process 36

0 10 20 30 40 50 60
epochs

0.000

0.002

0.004

0.006

0.008

0.010
Tr

ai
n

lo
ss

beta = 0.001
HD, alpha_0 = 0.01
Quad, alpha_0 = 0.01
HD, alpha_0 = 0.001
Quad, alpha_0 = 0.001
HD, alpha_0 = 0.0001
Quad, alpha_0 = 0.0001
HD, alpha_0 = 1e-05
Quad, alpha_0 = 1e-05

0 10 20 30 40 50 60
epochs

0.000

0.002

0.004

0.006

0.008

0.010

Tr
ai

n
lo

ss

beta = 0.006
HD, alpha_0 = 0.01
Quad, alpha_0 = 0.01
HD, alpha_0 = 0.001
Quad, alpha_0 = 0.001
HD, alpha_0 = 0.0001
Quad, alpha_0 = 0.0001
HD, alpha_0 = 1e-05
Quad, alpha_0 = 1e-05

0 10 20 30 40 50 60
epochs

0.000

0.002

0.004

0.006

0.008

0.010

Tr
ai

n
lo

ss

beta = 0.01
HD, alpha_0 = 0.01
Quad, alpha_0 = 0.01
HD, alpha_0 = 0.001
Quad, alpha_0 = 0.001
HD, alpha_0 = 0.0001
Quad, alpha_0 = 0.0001
HD, alpha_0 = 1e-05
Quad, alpha_0 = 1e-05

0 10 20 30 40 50 60
epochs

0.000

0.002

0.004

0.006

0.008

0.010

Tr
ai

n
lo

ss

beta = 0.06
HD, alpha_0 = 0.01
Quad, alpha_0 = 0.01
HD, alpha_0 = 0.001
Quad, alpha_0 = 0.001
HD, alpha_0 = 0.0001
Quad, alpha_0 = 0.0001
HD, alpha_0 = 1e-05
Quad, alpha_0 = 1e-05

0 10 20 30 40 50 60
epochs

0.000

0.002

0.004

0.006

0.008

0.010

Tr
ai

n
lo

ss

beta = 0.1
HD, alpha_0 = 0.01
Quad, alpha_0 = 0.01
HD, alpha_0 = 0.001
Quad, alpha_0 = 0.001
HD, alpha_0 = 0.0001
Quad, alpha_0 = 0.0001
HD, alpha_0 = 1e-05
Quad, alpha_0 = 1e-05

0 10 20 30 40 50 60
epochs

0.000

0.002

0.004

0.006

0.008

0.010

Tr
ai

n
lo

ss

beta = 0.6
HD, alpha_0 = 0.01
Quad, alpha_0 = 0.01
HD, alpha_0 = 0.001
Quad, alpha_0 = 0.001
HD, alpha_0 = 0.0001
Quad, alpha_0 = 0.0001
HD, alpha_0 = 1e-05
Quad, alpha_0 = 1e-05

(a) MNIST (P1)

0 25 50 75 100 125 150 175 200
epochs

1.0

1.5

2.0

2.5

3.0

3.5

Tr
ai

n
lo

ss

beta = 0.001
HD, alpha_0 = 0.01
Quad, alpha_0 = 0.01
HD, alpha_0 = 0.001
Quad, alpha_0 = 0.001
HD, alpha_0 = 0.0001
Quad, alpha_0 = 0.0001
HD, alpha_0 = 1e-05
Quad, alpha_0 = 1e-05

0 25 50 75 100 125 150 175 200
epochs

1.0

1.5

2.0

2.5

3.0

3.5

Tr
ai

n
lo

ss

beta = 0.006
HD, alpha_0 = 0.01
Quad, alpha_0 = 0.01
HD, alpha_0 = 0.001
Quad, alpha_0 = 0.001
HD, alpha_0 = 0.0001
Quad, alpha_0 = 0.0001
HD, alpha_0 = 1e-05
Quad, alpha_0 = 1e-05

0 25 50 75 100 125 150 175 200
epochs

1.0

1.5

2.0

2.5

3.0

3.5

Tr
ai

n
lo

ss

beta = 0.01
HD, alpha_0 = 0.01
Quad, alpha_0 = 0.01
HD, alpha_0 = 0.001
Quad, alpha_0 = 0.001
HD, alpha_0 = 0.0001
Quad, alpha_0 = 0.0001
HD, alpha_0 = 1e-05
Quad, alpha_0 = 1e-05

0 25 50 75 100 125 150 175 200
epochs

1.0

1.5

2.0

2.5

3.0

3.5

Tr
ai

n
lo

ss

beta = 0.06
HD, alpha_0 = 0.01
Quad, alpha_0 = 0.01
HD, alpha_0 = 0.001
Quad, alpha_0 = 0.001
HD, alpha_0 = 0.0001
Quad, alpha_0 = 0.0001
HD, alpha_0 = 1e-05
Quad, alpha_0 = 1e-05

0 25 50 75 100 125 150 175 200
epochs

1.0

1.5

2.0

2.5

3.0

3.5

Tr
ai

n
lo

ss

beta = 0.1
HD, alpha_0 = 0.01
Quad, alpha_0 = 0.01
HD, alpha_0 = 0.001
Quad, alpha_0 = 0.001
HD, alpha_0 = 0.0001
Quad, alpha_0 = 0.0001
HD, alpha_0 = 1e-05
Quad, alpha_0 = 1e-05

0 25 50 75 100 125 150 175 200
epochs

1.0

1.5

2.0

2.5

3.0

3.5

Tr
ai

n
lo

ss

beta = 0.6
HD, alpha_0 = 0.01
Quad, alpha_0 = 0.01
HD, alpha_0 = 0.001
Quad, alpha_0 = 0.001
HD, alpha_0 = 0.0001
Quad, alpha_0 = 0.0001
HD, alpha_0 = 1e-05
Quad, alpha_0 = 1e-05

(b) SVHN (P2)

0 50 100 150 200 250 300 350 400
epochs

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Tr
ai

n
lo

ss

beta = 0.001
HD, alpha_0 = 0.01
Quad, alpha_0 = 0.01
HD, alpha_0 = 0.001
Quad, alpha_0 = 0.001
HD, alpha_0 = 0.0001
Quad, alpha_0 = 0.0001
HD, alpha_0 = 1e-05
Quad, alpha_0 = 1e-05

0 50 100 150 200 250 300 350 400
epochs

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Tr
ai

n
lo

ss

beta = 0.006
HD, alpha_0 = 0.01
Quad, alpha_0 = 0.01
HD, alpha_0 = 0.001
Quad, alpha_0 = 0.001
HD, alpha_0 = 0.0001
Quad, alpha_0 = 0.0001
HD, alpha_0 = 1e-05
Quad, alpha_0 = 1e-05

0 50 100 150 200 250 300 350 400
epochs

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Tr
ai

n
lo

ss

beta = 0.01
HD, alpha_0 = 0.01
Quad, alpha_0 = 0.01
HD, alpha_0 = 0.001
Quad, alpha_0 = 0.001
HD, alpha_0 = 0.0001
Quad, alpha_0 = 0.0001
HD, alpha_0 = 1e-05
Quad, alpha_0 = 1e-05

0 50 100 150 200 250 300 350 400
epochs

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Tr
ai

n
lo

ss

beta = 0.06
HD, alpha_0 = 0.01
Quad, alpha_0 = 0.01
HD, alpha_0 = 0.001
Quad, alpha_0 = 0.001
HD, alpha_0 = 0.0001
Quad, alpha_0 = 0.0001
HD, alpha_0 = 1e-05
Quad, alpha_0 = 1e-05

0 50 100 150 200 250 300 350 400
epochs

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Tr
ai

n
lo

ss

beta = 0.1
HD, alpha_0 = 0.01
Quad, alpha_0 = 0.01
HD, alpha_0 = 0.001
Quad, alpha_0 = 0.001
HD, alpha_0 = 0.0001
Quad, alpha_0 = 0.0001
HD, alpha_0 = 1e-05
Quad, alpha_0 = 1e-05

0 50 100 150 200 250 300 350 400
epochs

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Tr
ai

n
lo

ss

beta = 0.6
HD, alpha_0 = 0.01
Quad, alpha_0 = 0.01
HD, alpha_0 = 0.001
Quad, alpha_0 = 0.001
HD, alpha_0 = 0.0001
Quad, alpha_0 = 0.0001
HD, alpha_0 = 1e-05
Quad, alpha_0 = 1e-05

(c) CIFAR10 (P3)

Figure B.1: Full optimization process that was used for estimation of
sensitivity for Proximal Quadratic and Hypergradient Descent methods.
Red lines are Proximal Quadratic and blue lines are Hypergradient
Descent optimization process for different initial learning rates α0.

37

C Quadratic Model Without
Regularization

Here we present the pseudocode for a quadratic model without regularization. This
adaptation is not stable because of a large bias in optimal step size estimate.

Algorithm 4 Momentum with Quadratic Adaptation
Require: initial parameter value θ0, initial step size α0, regularization constant β,

momentum µ, number of steps T
1: Initialize υ = 0, m = 0, α = α0

2: for t = 1, . . . , T do
3: Evaluate stochastic gradient g
4: Evaluate one-dimentinal derivatives f̂ ′(α) = gTυ and f̂ ′(0) = gToldυ

5: if 0 ≤ f̂ ′(α)−f̂ ′(0)
α ≤M or f ′(0) > 0 then

6: Update α = − αf̂ ′(0)

f̂ ′(α)−f̂ ′(0)

7: end if
8: Update moving average m = µm+ (1− µ)g
9: Evaluate new direction υ = −m

10: Update parameters θ = θ + αυ

11: Update gold = g

12: end for

	Declaration of Authorship
	Abstract
	Acknowledgements
	Introduction
	Empirical Risk Minimization
	Optimization Methods in Large-scale Machine Learning
	Deterministic Optimization
	Stochastic Optimization

	Specialized Optimization Methods for Deep Learning
	SGD with Momentum
	ADAM

	Step Size Optimization
	Overview

	Online Adaptation of Step Size
	Hypergradient Descent (HD) Adaptation
	Stochatic Barzilai-Borwein Step Size

	Proximal Point Algorithms
	Proximal Operator
	Trust Region Optimization
	Proximal Point Algorithms
	Stochastic Proximal Point Algorithms

	Proximal Step Size Adaptation
	Modeling of the Loss Function
	Restriction on the Model Usage

	Finding the Proximal Operator of the Model
	Proximal Point Iteration for Step Size Adaptation
	HD as Proximal Point of the First-order Approximation of the Loss Function

	Proximal Quadratic (PQ) Adaptation
	Fitting the Quadratic Model
	Optimum of the Quadratic Model
	Bias of the Quadratic Model
	Proximal Point Iteration for the Quadratic Model
	Quadratic Model Applicability

	Experiments
	Experimental Set-Up
	Results
	HD Adaptation for Momentum Optimization Algorithm
	Comparison Between PQ and HD Adaptation Algorithm with Fine-tuned
	Sensitivity of the PQ and HD Adaptation Models to the Hyperparameters 0 and

	Conclusions
	Bibliography
	Maximum Likelihood Parameters
	Full Optimization Process
	Quadratic Model Without Regularization

