
Object-Centric Learning for Real-World Videos
by Predicting Temporal Feature Similarities

Andrii Zadaianchuk* Maximilian Seitzer* Georg Martius

Summary

•We present VideoSAUR (Video Slot Attention Using temporal feature sim-
ilaRity): the first video object-centric method that scales to unconstrained
real-world datasets covering diverse domains.

•We greatly outperform previous state-of-the-art methods on challeng-
ing synthetic datasets.

•VideoSAUR is the first video-based object-centric method to scale to the
YouTube-VIS dataset.

Prior Work: Recurrent Slot Attention

• Slot Attention-based models follow
an encoder-decoder framework with a
set-vectored bottleneck.

•The Slot Attention module groups in-
put features into slots via iterative,
competitive attention steps.

•Recurrent Slot Attention initializes the
slots using slots of the previous frame.

# inputs: feature maps + position embedding
def recurrent_slot_attention(inputs , slots_prev , t):

# Slot recurrence: init random or from prev. slots
if t == 0:

slots = random_normal(mean , std)
else:

slots = predictor(slots_prev)

# N iterations of slot attention
for n in range(N):

scores = dot(k(inputs), q(slots))
weights = softmax(scores , axis="slots")
updates = weighted_mean(weights , v(inputs))
slots = gru(slots , updates)
slots = slots + mlp(slots)

return slots
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Figure provided by courtesy of the authors of [3].

Prior Work: DINOSAUR

•Our previous work DINOSAUR (ICLR’23, [4]) was the first object-centric
model scaling to real-world image data (e.g. PASCAL VOC, COCO).

•DINOSAUR utilizes pre-trained, highly semantic self-supervised features (e.g.
DINO [1]) with a feature reconstruction objective.
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Video Object-Centric Learning

•Represent video frames as a
set of vectors.

•Maintain consistency of the
representation in time.

•Produce localization masks
for each representation. Set
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Method

•We combine Recurrent Slot Attention [2] with DINOSAUR [4] and add a
temporal similarity loss that exploits temporal and semantic correlations for
object grouping.

•The temporal similarity loss incentivizes grouping patches

–with similar motion (similar to optical flow prediction).

–with similar semantics (useful e.g. for static objects).

• For efficient video decoding, we integrate the SlotMixer decoder that scales
well with the number of slots.

• Loss function: temporal similarity Lsim, optionally reconstruction loss Lrec

L =

T−k∑
t=1

Lsim(Pt,t+k,y
sim
t ) + αLrec(ht,y

rec
t ). (1)
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•Given L patch features h ∈ RL×D from times t and t + k, we compute the
affinity matrix At,t+k ∈ [−1, 1]L×L:

At,t+k =
ht

∥ht∥
·
(

ht+k

∥ht+k∥

)⊤
, (2)

and normalize it to a transition probability matrix Pt,t+k:

Pt,t+k = softmax

(
At,t+k

τ
, axis = t + k

)
. (3)

•Model predicts the transition probabilities ysim
t = P̂t,t+k for each patch:

Lsim = CE(Pt,t+k; P̂t,t+k). (4)

•Example affinity matrices A, probabilities P and predictions P̂ :

A P P̂

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0

Comparison to Object-Centric Methods

•We compare with SotA video object-centric methods on challenging synthetic
datasets (MOVi) and real-world datasets (YouTube-VIS).

MOVi-C MOVi-E YT-VIS

FG-ARI mBO FG-ARI mBO FG-ARI mBO

Block Pattern 24.2 11.1 36.0 16.5 24 14.9
SAVi 22.2 13.6 42.8 16.0 11.1 12.7
STEVE 36.1 26.5 50.6 26.6 20.0 20.9
VideoSAUR 64.8 38.9 73.9 35.6 39.5 29.1

Analysis of Similarity Loss Parameters

•Temperature τ controls prediction
task reliance on motion/semantics:
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•Time-offset k affects self-supervised
task difficulty:
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Choice of Self-Supervised Features

•VideoSAUR performs well with different ImageNet self-supervised features...
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• ...but also with features pre-trained directly on the target domain (MOVi):

MOVi-C MOVi-E

FG-ARI mBO FG-ARI mBO

MAE, ImageNet pretraining 58.0 30.4 72.8 27.1
MAE, MOVi-E pretraining 59.8 27.5 70.6 23.3

Surprising! ImageNet’s
object-centric bias is
apparently not needed.
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