MAX PLANCK INSTITUTE FOR INTELLIGENT SYSTEMS

Summary

- We present VideoSAUR (Video Slot Attention Using temporal feature simila**R**ity): the first video object-centric method that scales to unconstrained real-world datasets covering diverse domains.
- We greatly outperform previous state-of-the-art methods on challenging synthetic datasets.
- VideoSAUR is the first video-based object-centric method to scale to the YouTube-VIS dataset.

Prior Work: Recurrent Slot Attention

- Slot Attention-based models follow an encoder-decoder framework with a set-vectored bottleneck.
- The Slot Attention module groups input features into slots via iterative, competitive attention steps.
- Recurrent Slot Attention initializes the slots using slots of the previous frame.

Figure provided by courtesy of the authors of [3].

Prior Work: DINOSAUR

- Our previous work DINOSAUR (ICLR'23, [4]) was the first object-centric model scaling to *real-world image data* (e.g. PASCAL VOC, COCO).
- DINOSAUR utilizes pre-trained, highly semantic self-supervised features (e.g. DINO [1]) with a feature reconstruction objective.

Object-Centric Learning for Real-World Videos by Predicting Temporal Feature Similarities

Andrii Zadaianchuk*

Video Object-Centric Learning

- Represent video frames as a set of vectors.
- Maintain *consistency* of the representation in time.
- Produce localization masks for each representation.

Method

- We combine Recurrent Slot Attention [2] with DINOSAUR [4] and add a temporal similarity loss that exploits temporal and semantic correlations for object grouping.
- The temporal similarity loss incentivizes grouping patches -with similar motion (similar to optical flow prediction). -with similar semantics (useful e.g. for static objects).
- For efficient video decoding, we integrate the SlotMixer decoder that scales well with the number of slots.
- Loss function: temporal similarity \mathcal{L}^{sim} , optionally reconstruction loss \mathcal{L}^{rec}

$$\mathcal{L} = \sum_{t=1}^{T-k} \mathcal{L}^{\mathsf{sim}}(\boldsymbol{P}_{t,t+k}, \boldsymbol{y}_t^{\mathsf{sim}}) + \alpha \mathcal{L}^{\mathsf{rec}}(\boldsymbol{h}_t, \boldsymbol{y}_t^{\mathsf{rec}}).$$
(1)

Maximilian Seitzer*

Georg Martius

Temporal Similarity Loss

• Given L patch features $h \in \mathbb{R}^{L \times D}$ from times t and t + k, we compute the affinity matrix $A_{t,t+k} \in [-1,1]^{L \times L}$:

$$\boldsymbol{A}_{t,t+k} = \frac{\boldsymbol{h}_t}{\|\boldsymbol{h}_t\|} \cdot \left(\frac{\boldsymbol{h}_{t+k}}{\|\boldsymbol{h}_{t+k}\|}\right)^{\top}, \qquad (2)$$

and normalize it to a transition probability matrix $P_{t,t+k}$:

$$oldsymbol{P}_{t,t+k} = ext{softmax} \left(rac{oldsymbol{A}_{t,t+k}}{ au}, ext{ axis} = t+k
ight).$$
 (3)

• Model predicts the transition probabilities $m{y}_t^{
m sim} = \widehat{m{P}}_{t,t+k}$ for each patch: $\mathcal{L}^{sim} = CE(\mathbf{P}_{t,t+k}; \widehat{\mathbf{P}}_{t,t+k}).$ (4)

• Example affinity matrices A, probabilities P and predictions \hat{P} :

Comparison to Object-Centric Methods

• We compare with SotA video object-centric methods on challenging synthetic datasets (MOVi) and real-world datasets (YouTube-VIS).

	MOVi-C		MOVi-E		YT-VIS	
	FG-ARI	mBO	FG-ARI	mBO	FG-ARI	mBO
Block Pattern	24.2	11.1	36.0	16.5	24	14.9
SAVi	22.2	13.6	42.8	16.0	11.1	12.7
STEVE	36.1	26.5	50.6	26.6	20.0	20.9
VideoSAUR	64.8	38.9	73.9	35.6	39.5	29.1

Analysis of Similarity Loss Parameters

• Temperature τ controls prediction task reliance on motion/semantics:

• Time-offset k affects self-supervised task difficulty:

Loss Ablations

				MOVi-C		YT-VIS	
Feat. Rec.	Next Frame Feat. Pred.	Temp. Sim.	Optical Flow	FG-ARI	mBO	FG-AR	l mBO
\checkmark				40.2	23.5	35.4	26.7
			\checkmark	48.9			
\checkmark	\checkmark			47.2	24.7	37.9	27.3
		\checkmark		60.8	30.5	26.2	29.1
\checkmark		\checkmark		60.7	30.3	39.5	29.1

Choice of Self-Supervised Features

VideoSAUR performs well with different ImageNet self-supervised features...

MOCO-v3 MSN DINO

• ...but also with features pre-trained directly on the target domain (MOVi):

	MOVi-C		MOVi-E	
	FG-ARI	mBO	FG-ARI	mBO
MAE, ImageNet pretraining	58.0	30.4	72.8	27.1
MAE, MOVi-E pretraining	59.8	27.5	70.6	23.3

Surprising! ImageNet's object-centric bias is apparently not needed.

References

- [1] M. Caron, H. Touvron, I. Misra, H. Jégou, J. Mairal, P. Bojanowski, and A. Joi Emerging Properties in Self-Supervised Vision Transformers. ICCV, 2021.
- [2] T. Kipf, G. F. Elsaved, A. Mahendran, A. Stone, S. Sabour, G. Heigold, R. Jonschkowski, A. Dosovitskiy, and K. Greff. Conditional Object-centric Learning from Video. In ICLR. 2022.
- [3] F. Locatello, D. Weissenborn, T. Unterthiner, A. Mahendran, G. Heigold, J. Uszkoreit, A. Dosovitskiy, and T. Kipf. Object-Centric Learning with Slot Attention. In NeurIPS, 2020.
- [4] M. Seitzer, M. Horn, A. Zadaianchuk, D. Zietlow, T. Xiao, C.-J. Simon-Gabriel T. He, Z. Zhang, B. Schölkopf, T. Brox, and F. Locatello. Bridging the ga real-world object-centric learning. In ICLR, 2023.

